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Abstract. The theoretical investigation of time-dependent quantum systems requires the solution
of the time-dependent Schrödinger (Dirac) equation. The basis generator method presented here
allows a systematic construction of dynamically adapted wavefunctions based on a decomposition
of the Hilbert space into a hierarchical structure of finite subspaces. For the class of interactions
obeying an inverse integer power law, e.g., Coulomb and polarization interactions, an explicit
representation of the dynamically optimized basis set is given.

1. Introduction

The investigation of explicitly time-dependent quantum systems covers a great variety of
different topics, e.g. atoms and molecules in high intensity femtosecond laser pulses [1] or
the scattering of highly charged ions by atoms, ions, molecules, clusters or solids [2, 3] in
a wide range of collision energies. The large number of time-dependent systems which are
of current interest corresponds with different, often quite specialized theoretical approaches
for the solution of the respective time-dependent Schrödinger (Dirac) equation (TDSE) [4].
This includes the method offinite differences[5, 6] andbasis set expansionmethods, either
built upon atomic (single-centre [7], two-centre [8–10], three-centre AO [11], and Sturmian
expansions [12]) or molecular orbitals (MO expansions [13], and complex MO theory [14,15]),
usually including additional pseudostates.

Focusing on collisional physics as an example of a time-dependent quantum system, the
main features of these different approaches are the following: Basis set expansion methods
yield reasonably accurate results for excitation and charge transfer cross sections in a very
economical way. This is due to the fact that the relevant excitation and capture states are, in
general, contained within the basis set. However, standard basis sets are built from a geometric,
i.e. static, point of view. As far as ionization is concerned, usually no detailed results can be
obtained from standard basis sets. If the basis set is built upon states that form acompleteset,
exact results for ionization can be obtained in the limit of an infinite number of basis states.
However, this limit cannot be reached in practice.

Finite-difference methods on the other hand have the very appealing feature of accounting
for excitation, charge transfer and ionization with nearly the same accuracy. The precise
exploitation of finite-difference models implies the use of grids with a very large number of
points. If this criterion is not met, the results for excitation, charge transfer and ionization turn
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out to be unsatisfactory. The reason for the need for large grids is that it is not possible to
introduce any of the relevant aspects of physics into the construction of the grid.

The question thus arises, how to find asystematicand economicalapproach to the
description of time-dependent quantum systems that isnot restrictedto a subset of the important
physical processes. As the approach should be economical, it is obvious that it cannot be
based on ‘complete’ basis sets or ‘large’ grids (which simply is another characterization of
completeness). It is also obvious that it is therefore important to introduce as much as possible
of the underlying specific physical structure into the construction of the method. This implies
that adynamicalpoint of view should be inherent in the approach. The problem outlined here
arises in different time-dependent quantum systems, so we begin with some general arguments
on dynamical quantum systems.

A system whose time evolution is determined by the TDSE is characterized by justone
wavefunction, i.e. the solution of the TDSE for the appropriate initial condition. This fact
implies that the part of Hilbert space that is addressed by the solution of the TDSE at any
time is onlyone-dimensional. As a consequence, it is not necessary to use large basis sets to
describe the time evolution of the quantum system:completenessof a basis set is irrelevant for
the precision of the results obtained—if only a basis has been chosen that covers that part of the
Hilbert space that is relevant during the time evolution of the system. It is clear that such a basis
has to be explicitly time-dependent in general, and will strongly depend on the characteristics
of the quantum systemand its initial condition. It is, however, possible to outline a theoretical
description of how to create a suitable time-dependent basis set forarbitrary time-dependent
quantum systems.

In this paper, we will therefore start the discussion with a general analysis of time-
dependent quantum systems. In order to build a suitable basis, the Schrödinger operator
of the time-dependent system itself is used to define the functions in the basis set. This leads to
a basis set expansion that is dynamically adapted to the time evolution of the quantum system
under investigation. Then we concentrate on the case of collisional systems. It will be shown
that it is possible to deriveexplicit expressions for an appropriate time-dependent basis set if
one, for example, focuses on pure Coulomb systems.

In a previous publication [16], we have already shown how a basis can be constructed by
repeated application of the Schrödinger operator on a set of generating functions leading to a
hierarchy of states. In order to determine the explicit form of the corresponding wavefunctions,
an approximation to the exact hierarchy of states has been suggested. Despite the—at first
glance—rather crude approximation of [16], practical calculations based on this formalism
have shown to be accurate [17–21] for Coulomb systems. Here, we show how the previous
results can be understood and improved using a different approach to the generation of the
same hierarchy of states. This leads to a concept which we refer to as thebasis generator
method(BGM). Although we study the validity of the BGM concept exclusively for the case
of Coulomb systems and a class of similar interactions, we emphasize that the concept also
applies for other types of time-dependent quantum systems.

We start the discussion of the BGM concept with an outline of the general theory of
the TDSE in a basis-set expansion and define the hierarchy of states by repeated application
of the Schr̈odinger operator (section 2). In section 3, we show under which conditions a
representation space can be found that exactly contains the hierarchy of states of section 2.
We then investigate the special case of the Coulomb interaction in section 4 and derive an
explicit expression of the correspondingBGM basis. It will be explained how the TDSE can
be solved using these results in terms of a coupled channel calculation. Finally, we demonstrate
in section 5 that the results of section 4 can be generalized to the entire class of potentials that
can be expressed as a series in inverse integer powers of the radial distance.
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2. General theory—the BGM concept

The time-dependent quantum system under consideration is specified by a HamiltonianĤ (t)

which can be divided into a stationary partĤ0 and a time-dependent potentialV̂ (t) that vanishes
for asymptotic times. Given the initial condition|90〉 ≡ |9(t0)〉, the time evolution of a non-
relativistic quantum system is completely determined by the TDSE, specified below in the
interaction picture defined bŷH0 (with t0→−∞):

ÔI(t)|9I(t)〉 = (ĤI(t)− i∂t )|9I(t)〉 = (V̂I(t)− i∂t )|9I(t)〉 = 0

|9I(t)〉 = exp[iĤ0(t − t0)]|9(t)〉
V̂I(t) = exp[iĤ0(t − t0)]V̂ (t) exp[−iĤ0(t − t0)]
Ĥ (t) = Ĥ0 + V̂ (t) lim

t→±∞ Ĥ (t) = Ĥ0.

(2.1)

The index I indicates that operators and states are given in the interaction picture. Operators
and states in the Schrödinger picture are not explicitly characterized by a specific index.

For any given initial state|90〉, the solution of the TDSE defines a one-dimensional,
time-dependent subspace of the Hilbert space. The aim is therefore to find a finite basis set of
time-dependent states{|φuv (t)〉} such that the correspondingfinite, but time-dependentsubspace
(denoted asA) of the Hilbert space contains the solution|9I(t)〉 for any time.

For the moment, let us consider anarbitrary model spaceA. We define the projector on
A asÂ, and its complement aŝB = 1− Â. Following the arguments given in [16], we obtain
the TDSE inA

ÂÔI(t)Â|9A
I (t)〉 = V̂ opt

I (t)|9A
I (t)〉

V̂
opt
I (t)|9A

I (t)〉 = iÂÔI(t)

∫ t

t0

B̂I(t, t
′)ÔI(t

′)|9A
I (t
′)〉 dt ′ (2.2)

with B̂I(t, t
′) denoting the propagator inB-space andV opt

I (t) the optical potential which
globally allows for an exchange of density between the spacesA andB. If A is spanned
by a finite orthonormal set of basis states{|�j(t)〉, j = 1, . . . , J }, the corresponding so-called
coupled channel equationscan be written as

iċk(t) =
J∑
j=1

cj (t)〈�k(t)|ÔI(t)|�j(t)〉

−i
J∑
j=1

∫ t

t0

cj (t
′)〈�k(t)|ÔI(t)B̂I(t, t

′)ÔI(t
′)|�j(t ′)〉 dt ′ (2.3)

with the coefficientsck(t) = 〈�k(t)|9A
I (t)〉 representing theA-space part of theexactsolution

of the TDSE. For an arbitrary choice ofA, in generaleachA-space channel|�j(t)〉 is coupled
to the complementary spaceB via the optical potentialV opt

I (t).
We choose a finite set of eigenstates ofĤ0 which we shall call thegenerating basisas a

starting point for the construction of a dynamically adapted model spaceA
Ĥ0|φ0

v (t)〉 = εv|φ0
v (t)〉 v = 1, . . . , V . (2.4)

According to [16], the full model spaceA ≡ AUV is then spanned in terms of ahierarchy of
statesdefined by the Schrödinger operator̂OI(t) = (V̂I(t)− i∂t) as

|φuv (t)〉 = (V̂I(t)− i∂t − εv)|φu−1
v (t)〉

= (V̂I(t)− i∂t − εv)u|φ0
v (t)〉 u = 1, . . . , U, v = 1, . . . , V . (2.5)

The additional termεv has been introduced to remove trivial dependences between states of
different hierarchical order. We emphasize—with respect to the discussion in section 3—that
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these additional terms obviously leave the spaceAUV invariant. The states{|φuv 〉} are linearly
independent (but in general not orthonormal) except for the trivial case that the hierarchy (2.5)
is closed under the operation(V̂I(t)− i∂t). Moreover, we have shown in [16] that only states
of highest orderu = U can be coupled toB-space via the optical potentialV opt

I (t). Thus, the
coupled channel equations inAUV reduce to

i
U∑
u=0

V∑
v=1

ċuv (t)〈φjk (t)|φuv (t)〉 =
U∑
u=0

V∑
v=1

cuv (t)〈φjk (t)|ÔI(t)|φuv (t)〉 j < U

i
U∑
u=0

V∑
v=1

ċuv (t)〈φjk (t)|φuv (t)〉 =
U∑
u=0

V∑
v=1

cuv (t)〈φjk (t)|ÔI(t)|φuv (t)〉

−i
V∑
v=1

∫ t

t0

cUv (t
′)〈φU+1

k (t)|B̂UVI (t, t ′)|φU+1
v (t ′)〉 dt ′ j = U.

(2.6)

On the other hand, the population of the states{|φuv (t)〉} decreases with increasing orderu due
to the fact that an increasing number of successive interactions is required to reach a higher
subspace of the hierarchy. In this way, the action of the optical potential on the states of
the finite model spaceAUV is minimized—independent of the particular choice of the time-
dependent interaction̂V (t). In this sense, the finite model spaceAUV can be regarded as a
dynamically optimized representationof the solution of the TDSE.

The role of the orderU of the hierarchy of states as a parameter of convergence of the
model spaceAUV is based on the fact that the TDSE in its time-discretized version can be
described by a finite sequence of actions of the Schrödinger operator on the physical initial
condition. As long as the orderU of the hierarchy of states is larger than the number of time-
steps needed to discretize the TDSE, the reduced coupling scheme of (2.6) ensures that the time
evolution of the quantum system is contained within the model spaceAUV . Although there
is no possibility to determine the velocity of convergencea priori, practical experience shows
that ordersU = 6–12 of the hierarchy of states are usually sufficient to achieve convergence
[17–21].

We emphasize that the aim of this strategy is to select a basis that is able to represent the
relevantpart of the Hilbert space for the time-dependent quantum system under investigation.
This implies that the model spaceAUV highly depends on the structure of the interaction
potentialV̂ (t) from which it is generated.

The hierarchy of states{|φuv (t)〉} can be obtained by means of the recursion relation (2.5),
both in the interaction picture (noted as{|φuv (t)〉}) or the Schr̈odinger picture (noted as{|ϕuv (t)〉},
with ∂t |ϕ0

v 〉 = 0):

|φuv (t)〉 = (V̂I(t)− i∂t − εv)|φu−1
v (t)〉

= exp[iĤ0(t − t0)](Ĥ0 − εv + V̂ (t)− i∂t )|ϕu−1
v (t)〉

⇒ |ϕuv (t)〉 = (Ĥ0 − εv + V̂ (t)− i∂t )|ϕu−1
v (t)〉.

(2.7)

Using this relation and equation (2.4), the states of the ordersu = 1, . . . ,3 can explicitly be
written in the Schr̈odinger picture (which we use exclusively from here on) as

|ϕ1
v (t)〉 = V̂ (t)|ϕ0

v 〉
|ϕ2
v (t)〉 = (− 1

21V̂ (t) + V̂ (t)2 − i∂t V̂ (t)−∇V̂ (t) · ∇)|ϕ0
v 〉

|ϕ3
v (t)〉 = ( 1

4∇4V̂ (t)− (∇V̂ (t))2 − 3
2V̂ (t)1V̂ (t) + i∂t1V̂ (t) + V̂ (t)3

−3V̂ (t)i∂t V̂ (t)− ∂2
t V̂ (t) +∇3V̂ (t) · ∇ − 3V̂ (t)∇V̂ (t) · ∇

+2i∂t∇V̂ (t) · ∇ +∇(∇V̂ (t) · ∇) · ∇ +∇V̂ (t) · ∇V̂0)|ϕ0
v 〉

(2.8)

for an effective one-particle system witĥH0 = − 1
21+V̂0. The properties of the states{|ϕuv (t)〉}

are therefore determined by the generating basis{|ϕ0
v 〉} and its derivatives, the potentialV̂0 of
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the undisturbed system and its derivatives with respect to spatial coordinates, and the structure
of the time-dependent interaction̂V (t). The basis set{|ϕuv (t)〉} is adapted to the time evolution
of |9(t)〉 via the potential̂V (t). In equation (2.8), derivatives of̂V (t)occur. This leads to terms
which are proportional to the external control variables of the time-dependent system (e.g., the
velocity in a collisional process, the frequency in a laser field etc). The states|ϕuv (t)〉, u > 1,
are thus dependent on these variables. As can be seen from equation (2.8), the potentialV̂0 of
the undisturbed quantum system influences the hierarchy of states in two different ways:V̂0

determines the eigenstates of the undisturbed quantum system which we use as the generating
basis{|ϕ0

v 〉}, andV̂0 modifies the behaviour of the time-dependent states|ϕuv (t)〉, u > 2. We
mention that the asymmetry of equation (2.8) with respect toV̂ (t) andV̂0 is a result of the use
of the eigenvalue equation (2.4).

The approximation used in our previous publication [16] was based on neglecting all but
the pure potential termŝV (t)u in the equation for|ϕuv (t)〉. In general, this approximation is
expected to be too crude. In the following section we apply the hierarchy of states in a different
fashion, which allows us to take into accountall terms of equation (2.8). For the special case
of V̂ (t) being a Coulomb potential (see section 4), we demonstrate that the approximation
used in [16] turns out to be better justified than can be expected at first glance.

3. The BGM strategy

As may be seen from equation (2.8), the structure of the states{|ϕuv (t)〉} becomes very involved
with increasing orderu. For givenV̂ (t), it is therefore useful to introduce an alternative set
of states{|χµν (t)〉, ν = 1, . . . , N,µ = 0, . . . ,M} generating the same or even a larger model
space. The basic idea of thisBGM strategyis to determine functions with a simpler structure

|χµν (t)〉 = X(V̂ (t))µ|χ0
ν 〉. (3.1)

{|χ0
ν 〉} defines a new generating basis, already containing all kinds of ‘static properties’ (i.e.

terms of the typêV0,∇V̂0, . . . |ϕ0
v 〉) and derivative terms (i.e.∇n|ϕ0

v 〉), whileX(V̂ (t)) accounts
for the dynamical adaptation of the basis to the time-dependent interaction potentialV̂ (t).
These states span a new time-dependent model spaceRMN with

AUV ⊆ RMN ≡ [|χµν (t)〉, ν = 1, . . . , N,µ = 0, . . . ,M]. (3.2)

For any given(U, V ), the numbersM(U,V ) andN(U, V ) have to be determined. We show
that the following two conditions are sufficient for the validity of equation (3.2). First, the
generating basis of the hierarchy of states (including the physical initial condition) must be
contained inR0N

|90〉 = |9(t0)〉 ∈ A0V ⊆ R0N (3.3)

and second, the operator(Ĥ0 + V̂ (t) − i∂t ) must map each state|χµν (t)〉 onto a finite linear
combinationLµν of the states{|χκλ (t)〉}
(Ĥ0 + V̂ (t)− i∂t )|χµν (t)〉 = Lµν({|χκλ (t)〉}) ∈ [|χκλ (t)〉, λ = 1, . . . , L, κ = 0, . . . , K] (3.4)

whereL = L(µ, ν) andK = K(µ, ν). The second condition doesnot imply closure of
the model spaceRMN under the operation(Ĥ0 + V̂ (t) − i∂t ), since the linear combination
Lµν may include contributions of higher-order states, i.e.κ > µ, λ > ν. The state
(Ĥ0 + V̂ (t) − i∂t )|χµν (t)〉 can, however, be written as a finite linear combination of states
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Figure 1. The BGM concept: connection of the BGM space to the generating basis and
the corresponding hierarchy of states for a hierarchy of orderU = 2, illustrating the relation
A0V ⊆ A1V ⊆ A2V ⊆ RM(2,V )N(2,V ).

that have thesame structureas the original state|χµν (t)〉. With conditions (3.3) and (3.4) it
follows immediately that

|ϕ0
n〉

(3.3)= L(|χ〉)
|ϕ1
n(t)〉 = (Ĥ0 + V̂ (t)− i∂t )|φ0

n〉 = (Ĥ0 + V̂ (t)− i∂t )L(|χ〉)
= L((Ĥ0 + V̂ (t)− i∂t )|χ〉)3.4=L(L(|χ〉)) = L(|χ〉)
...

AUV ⊆ RMN

(3.5)

as long asM,N are chosen sufficiently large. The relation of the BGM spaceRMN to the
hierarchy of states with the corresponding exact model spaceAUV and its generating basis
A0V is shown in figure 1 for a hierarchy of states withU = 2. This rather low value ofU has
been chosen to make the figure sufficiently transparent. In practical calculations, the hierarchy
orderU is usually much larger, taking values around 6–12. Since the model spaceAUV is
coupled byÔ(t) exclusively to the model spaceA(U+1)V , the intuitive interpretation of this
picture is not misleading.

The statements of this and the previous section apply to any type of time-dependent
quantum system and to any kind of time-dependent potentialV̂ (t) which determines the
dynamics of the system, as long as the potentialV̂ (t) vanishes asymptotically in time.
According to the explicit physical system under investigation and the class of time-dependent
potentials acting on it, the model spaceRMN has to be determined explicitly. For example,
the time-dependent quantum system may be a projectile–target–scattering system with the
HamiltonianĤ0 = ĤT, V̂ (t) = V̂P(t) with a passive ion as projectile and an ion, atom or
molecule as target, or we can think of a quantum system in a classical laser field withĤ0 = ĤT,
V̂ (t) = A(t)z. If investigating a scattering system, the time-dependent potential could be of
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the formV̂P(t) =
∑K

κ=0 cκ(rP(t))
−κ , including Coulomb and polarization potentials. We could

also change our point of view and take the ion as target and a cluster or solid as ‘projectile’,
describing the cluster or the surface of the ‘approaching’ solid by appropriate potentialsV̂P(t).

In the following section, we discuss the BGM concept for the case of a scattering system
with a H-like ion as target under the influence of a time-dependent Coulomb potential due
to the incident projectile. We will present an explicit basis set expansion for this system
and give a proof of the validity of the conditions (3.3) and (3.4) imposed. In section 5, it is
demonstrated that these results can immediately be generalized to the case of a potential of
the formV̂P(t) =

∑K
κ=0 cκ(rP(t))

−κ . In this way, it is not only possible to address Coulomb
systems and systems with a polarization interaction, but also to handle systems with arbitrary
potentials that can be expanded in a sum of the above form.

4. The Coulomb interaction

We consider a one-electron interatomic collisional system, where the target is described by the
undisturbed Hamiltonian̂H0 in the target systemST, andV̂ (t) accounts for the time-dependent
influence of the incident projectile. The Hamiltonian can be specified as

Ĥ (t) = Ĥ0 + V̂ (t) = ĤT + V̂P(t) = − 1
21 + V̂T + V̂P(t)

= −1

2
1− QT

r
− QP

|r −RP(t)| ≡ −
1

2
1− QT

r
− QP

rP(t)
. (4.1)

The motion of the projectile is assumed to follow a straight line

RP(t) = b + vt (4.2)

in order to assure thatST is an inertial system. We define the coordinate system ofST in such
a way that the scattering plane is given by the(x, z)-plane ofST and thez-axis is parallel tov,
i.e.,RP(t) = (b, 0, vt), see figure 2.

4.1. Regularization of the Coulomb interaction

In order to calculate the states|ϕuv (t)〉, derivatives of the Coulomb potential are required. Since
the functions〈r|ϕuv (t)〉 should remainL2 Lebesgue-integrable, the Coulomb potentials need
to be regularized:

V̂P(t)→ V̂P(t; ε) = −QPWP(t; ε)
WP(t; ε) = [(x − Rx(t))2 + y2 + (z− Rz(t))2 + ε2]−1/2

= [rP(t)
2 + ε2]−1/2

V̂T → V̂T(εT) = −QTWT(εT)

WT(εT) = [r2 + ε2
T]−1/2.

(4.3)

There is no unique way of regularizing Coulomb potentials, but the choice (4.3) is distinguished
by the fact thatWP(t) (and analogouslyWT) can be differentiated to an arbitrary degree and
that all derivatives can be expressed in powers ofWP(t) (see appendix A). The regularization
WP(t;µ) = rP(t)−1[1− exp(−µrP(t))] used in [16] is adequate to ensure the integrability of
the wavefunctions〈r|V̂ uϕ0

v 〉, but is inappropriate with respect to the derivatives of the potential
needed here.

To be consistent, the regularized Coulomb potentialsV̂P(t; ε) andV̂T(εT) are employed
both for the generation of the states in the basis and for the solution of the TDSE. The use of
the regularization is equivalent to the introduction of a finite size of the projectile and target
nuclei. It is consequently expected that the influence of the regularization of the Coulomb
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Figure 2. The coordinate systemST used to describe the scattering of a projectile ion by the H-like
target ion.

interaction on the solution of the TDSE is negligible as long as the parametersε andεT are
sufficiently small.

4.2. The hierarchy of states for Coulomb interactions

The basis functions|ϕuv (t)〉 of the first three orders in the hierarchy of states for the regularized
Coulomb potential can be derived from (2.8) by means of the relations in appendix A. We use
the abbreviatioñ∇ ≡ ∇ − iṘP to simplify the notation

|ϕ1
v (t)〉 = −QPWP(t)|ϕ0

v 〉
|ϕ2
v (t)〉 = (−QP[ 3

2ε
2WP(t)

5 + (rP(t) · ∇̃)WP(t)
3] + Q2

PWP(t)
2)|ϕ0

v 〉
|ϕ3
v (t)〉 = (QP[15ε2WP(t)

7− 105
4 ε

4WP(t)
9− 15ε2WP(t)

7(rP(t) · ∇̃)
−3WP(t)

5(rP(t) · ∇̃)2 +WP(t)
31̃] + QPQT(rP(t) · r)WP(t)

3W 3
T

+Q2
P[ 11

2 ε
2WP(t)

6−WP(t)
4 + 3WP(t)

4(rP(t) · ∇̃)] −Q3
PWP(t)

3)|ϕ0
v 〉.

(4.4)

The higher orders can also be derived directly, but—as already seen here—these expressions
become very complicated. Fortunately, it is not necessary to know the basis functions in terms
of their generating operators explicitly as is shown in the following section.

4.3. Explicit form of the BGM basis set expansion

We have to find states|χµν (t)〉 whose structure is not changed by the action of the operator
(Ĥ0 + V̂ (t) − i∂t ) as required by condition (3.4). This implies that derivatives (e.g.
(rP(t) · ∇),1, . . .) of {〈r|χµν (t)〉} lead to functions of the same type which is a characteristic
feature of polynomials and the exponential function. In addition, terms containing the target
potentialWT should be completely absorbed by the generating basis{〈r|χ0

ν 〉}, and terms
containing the projectile potentialWP(t) by the BGM basis{〈r|χµν (t)〉}. In this way we are
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systematically led to the following ansatz for a dynamically optimized basis set (we use the
conventionsr2

εT
≡ r2 + ε2

T andl ≡ h + j + k)

χ̃0
nhjk(r; ξ, εT) = rn−l−1

εT
xhyj zk exp(−ξrεT

)

χ̃
µ

nhjk(r, t; ξ, εT, ε) = WP(t; ε)µχ̃0
nhjk(r; ξ, εT).

(4.5)

Since the physical initial condition is that of an electron on one of two seperated ions, it
is favourable not to work with this Cartesian representation, but to introduce an equivalent
spherical representation of the basis functions in terms of the spherical harmonics (denoted
by Yml in the following) in order to account for the symmetry pattern of the physical process
under investigation:

χ0
nlm(r; ξ, εT) = rn−1

εT
exp(−ξrεT

)(r/rεT
)lYml (θ, ϕ)

χ
µ

nlm(r, t; ξ, εT, ε) = WP(t; ε)µχ0
nlm(r; ξ, εT)

(4.6)

where

l, µ, L,N,M ∈ N0 m, n,Nz ∈ Z
−l 6 m 6 l 6 L l +Nz < n 6 N
Nz 6 06 L 6 N − 1 06 µ 6 M.

Apart from the negative powers ofrεT
which can enter into equation (4.6) forn 6 l, the

functionsχ0
nlm are closely related to spherical Slater-type orbitals. The only difference occurs

due to the regularization parameterεT and vanishes in the limitεT → 0. The wavefunctions
{χµnlm(t)} with µ > 0 introduce anadditional degree of freedom that isessentialin order to
satisfy condition (3.4). The functionsχµnlm(t) are obviously linearly independent, except for
the special case that the origin of the projectile coincides with the origin of the target, which
may only happen if the impact parameterb is zero. Because of geometrical reasons, however,
this case only contributes to transition amplitudes with weight zero.

In order to prove that the basis set of equation (4.6) is in agreement with conditions (3.3)
and (3.4), we first mention that the physically relevant initial condition of the target atom can be
expressed in terms of a linear combination of basis functions: this is guaranteed if we assume
that the initial wavefunction of the H-like target ion can be expressed as a linear combination
of Slater-type orbitals, since Slater-type orbitals can again precisely be approximated by the
functionsχ0

nlm if εT is sufficiently small. It is thus possible to define a suitable generating basis
R0N .

The difficult part is to show that condition (3.4) is also satisfied. We abbreviate the
notation by introducing multi-indicesj, k for respective states|χµnlm(t)〉. Since the states
|χµnlm(t)〉 form a complete set forunlimited values of the indices(n, l,m), the action of the
Schr̈odinger operator̂O(t) on a BGM function can be written as

Ô|k(t)〉 =
∑
k′
ak′ |k′〉. (4.7)

With respect to (4.7), condition (3.4) requires that the sum should befinite. This is equivalent
to the requirement that only a finite number of coefficients

ak′ =
∑
k′′
〈k′|k′′〉−1〈k′′|Ô|k〉 (4.8)

may be different from zero. In appendix C it is shown that matrix elements of the form〈k′′|Ô|k〉
can be readily expressed in terms of a finite sum of overlap matrix elements,

〈k′′|Ô|k〉 =
finite∑
j

bj 〈k′′|j〉 j ∈ Ik (4.9)
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whereIk is a k-dependent set of indices whose maximum number of elements for anyk is
finite. For the coefficientsak′ one thus obtains

ak′ =
∑
k′′
〈k′|k′′〉−1〈k′′|Ô|k〉

=
∑
k′′

finite∑
j

bj 〈k′|k′′〉−1〈k′′|j〉

= bj δk′j

=
{
bk′ if k′ ∈ Ik
0 otherwise.

(4.10)

SinceIk is a finite set, only afinitenumber of coefficientsak′ are different from zero, q.e.d.
It is interesting to note that the BGM basis set expansion{|χµnlm(t)〉} is independent of the

velocityv of the projectile and of its chargeQP (see equation (4.6)), although the states|ϕmn (t)〉
of the hierarchy of states are explicitly dependent on these parameters (see equation (4.4) and
appendix A). This is due to the fact that these parameters enter into the equations (C.2) and
(C.8) only as constant coefficients. As a consequence, the same BGM basis set may be used
to calculate collisions with different values ofv andQP, which is of practical interest.

With respect to practical calculations, we also mention that there is no constraint on the
number of different values forξ entering the BGM basis (4.6). In principle, it is possible to
work only with one single value ofξ . It may, however, be favourable to increase the number
of ξ -values in order to achieve faster convergence of the BGM basis with respect to the index
µ. This especially applies if certain excitation channels become important during the collision
because these channels can be included inR0N using additional values ofξ . Since the choice
of the parametersξ depends on the charge of the target, the BGM basis set expansion becomes
implicitly dependent onQT.

For practical purposes, it is also useful to replace the complex form of the BGM basis by
a set of real functions

{Yml (θ, ϕ),−l 6 m 6 l} → {Pml (cosθ) cos(mϕ), Pml (cosθ) sin(mϕ), 06 m 6 l} (4.11)

because of the symmetry introduced by the scattering plane. This symmetry ensures that
the gerade part of the basis with cos(mϕ) and the ungerade part with sin(mϕ) do not mix
throughout the collisional process, which simplifies the solution of the TDSE considerably.

We emphasize that—despite the different possible notations of the BGM basis set—the
BGM representationspaceis uniquely determined by the BGM conditions (3.3) and (3.4),
since these equations fix the boundary conditions both of the stationary and the dynamical part
of the BGM representation space. Any additional wavefunction introduced into the BGM basis
set either turns out to be redundant or immediately destroys the validity of condition (3.4).

4.4. Matrix elements and the solution of the TDSE

With the BGM basis derived, we now have a suitable tool to solve the TDSE. In the
representation space of the BGM basis, the TDSE takes the form of the following coupled
channel equations (confer equation (2.6))

i
M∑
µ=0

∑
nlm

ċ
µ

nlm(t)〈χ0
n′l′m′ |WP(t)

µ′+µ|χ0
nlm〉

=
M∑
µ=0

∑
nlm

c
µ

nlm(t)〈χ0
n′l′m′ |WP(t)

µ′(− 1
21 + V̂T + V̂P(t)− i∂t )WP(t)

µ|χ0
nlm〉 (4.12)
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where we have used the Schrödinger picture. The matrix elements can be reduced to the
overlap matrixSχ (see appendix C). It is therefore sufficient to calculate only the overlap
matrix elementsSχ for every given positionRP of the projectile. The resulting coupled channel
equations (4.12) can then be solved by standard methods in a second step. Since the overlap
matrix elements are independent of the velocityv and of the projectile chargeQP, the same
set of matrix elements can be used to solve the TDSE of different collisional processes.

In order to get information about physically interesting quantities, e.g. transition
amplitudes to characteristic reaction channels, the calculated solution of the TDSE has to
be projected on the wavefunctions describing these channels because the BGM basis states do
usually not correspond directly with the interesting reaction channels.

5. The basis generator method for potentialŝVP =
∑
cκr
−κ
P

If the projectile potential̂VP(r, t) is given as a sum

V̂P(r, t; ε) =
K∑
κ=0

cκW(r, t; ε)κ ≡
K∑
κ=0

cκ

(
1

rPε (t)

)κ
(5.1)

of powers of the regularized Coulomb potentialW(t; ε) of section 4, we can use the same BGM
basis set as given by equation (4.6). The validity of condition (3.3) is guaranteed because the
relevant initial condition is independent of the projectile potentialV̂P(t). The validity of
condition (3.4) is a consequence of the fact that the Schrödinger matrix elements can still be
reduced to overlap matrix elements in the same way as demonstrated in appendix C. The only
difference occurs concerning equation (C.2) because of the different form ofV̂P(t). As long
asV̂P(t) is given as a series in powers ofW(t; ε), the application ofV̂P(t) on the BGM states
|χµnlm(t)〉 leads again to a linear combination of BGM states

K∑
κ=0

cκW(t; ε)κ |χµnlm(t)〉 =
K∑
κ=0

cκ |χκ+µ
nlm (t)〉. (5.2)

It should, however, be noticed that the number of states needed to describe the exact
representation spaceAUV to a given order of(U, V ) may vary.

Concerning the regularization of the potentialV̂P(t), it is important to take into account
that the singular behaviour near the centre of the force, i.e.r ≈ 0, of any electrostatic potential
is at most proportional to 1/r. It follows, that anunregularizedpotential V̂P(t) becomes
unphysical nearr ≈ 0 if any coefficientcκ 6= 0 for κ > 1. With respect to equation (5.1),
the regularization ofV̂P(t) is essentialto describe aphysically meaningful potential. If a
potential of asymptotic behaviour 1/rn is to be characterized, the appropriate value ofε has
to be determined simultaneously with the coefficientscκ , κ > n.

In analogy to the argument given in equation (5.2), we may use the BGM basis set (4.6)
also in the case of a potentialV̂T given as a series expansion inr−κεT

, as long as the physical initial

condition according tôVT can be expressed as a linear combination of BGM basis functions.
Previous remarks on the meaning of the regularization parameter also apply here.

6. Concluding remarks

We have shown that a hierarchy of dynamically adapted states can be used to systematically
define an appropriate basis set for the solution of the TDSE under investigation. This hierarchy
is defined in terms of repeated application of the Schrödinger operator on a set of generating
states which contains the initial state of the time-dependent quantum system.
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In general, this hierarchy of states can only be expressed in terms of a complicated series
in operators acting on the generating states. In the case of a Coulomb interaction, another set
of states (referred to as the BGM basis) can, however, be constructed, containing the hierarchy
of states to a given order exactly. For the BGM basis,explicit expressions have been derived.
Moreover, the BGM basis is uniquely determined.

The corresponding BGM basis functions are quite similar to Slater-type orbitals: however,
additional factors 1/r |n|εT

and 1/rPε (t)
µ occur. With respect to the completeness relation of the

Slater-type orbitals, this seems astonishing at first glance. The completeness relation is of
course only valid in the limit of aninfinite number of functions. Since we are dealing with
finitebasis set expansions, the completeness relation is not applicable. By contrast, the inverse
powers of the radial distances in the BGM basis constitute aresummationof an infinite number
of Slater-type orbitals. In this way, the advantage of the BGM basis set over standard basis
set expansions becomes obvious because a better representation of|9(t)〉 is achieved with a
smaller amount of functions. In addition, the maximum inverse powers of the radial distances
rPε (t), rεT

occuring in the BGM basis set arebalancedwith respect to the maximum quantum
numbers(n, l,m) of the Slater-type part of the basis if the dependency on the indices derived
implicitly in appendix C is observed.

Comparing the BGM basis with the basis expansion of [16], which includes the factor
1/rPε (t)

µ but none of the structure 1/r |n|εT
, it becomes obvious that the approximation used

in [16] is shown to be adequate for the case of a Coulomb potential. On the other hand, further
improvement of the results of practical calculations is to be expected if terms with 1/r |n|εT

are
also taken into consideration.

Another interesting feature of the BGM basis is the fact that these functions account for
a dynamical adaptationto the time evolution of|9(t)〉, but have been proven to be explicitly
independent of the velocityv of the approaching projectile. The dynamical adaptation of the
BGM basis is therefore exclusively determined by the implicit time-dependence of the BGM
wavefunctions introduced by the factors 1/rPε (t)

µ. In this case, we have demonstrated that
the inclusion oftranslation factorsin the basis isnot necessary for an accurate description of
the time evolution of the quantum system.

We emphasize that these very appealing features of the BGM basis are due to the
consequent restriction of the basis set to describe only the relevant part of Hilbert space.
It is clear, that a basis of this form is in general not adequate to represent, e.g., all possible
continuum states or all possible charge transfer states of the respective quantum system, since
the BGM basis doesnot aim at completeness. However, if a certain continuum state or a
particular charge transfer state becomes important for the collisional process in a certain time
interval, the BGM basis set expansion covers these segments of Hilbert spacebecausethey
are accessed during the time evolution of the quantum system. Vice versa, if certain states
cannot be represented by the BGM basis, then this is due to the fact that they are not relevant
to the time evolution of|9(t)〉. In a rigorous sense, however, these statements hold only if the
size of the BGM basis has been adapted to the physical demands of the quantum system under
investigation.

In the specification and justification of the explicit BGM basis, the structure of the
derivatives of the potentials occuring in the TDSE have turned out to be the crucial point. It
can therefore not be expected to find analogous basis set expansions for all kinds of potentials.
However, we have shown that the results for the Coulomb interaction can be generalized to
potentials that are given in terms of a sum in inverse integer powers of the radial distance, thus
including for example the polarization interaction. The BGM concept may, in addition, also
be applied to establish suitable basis set expansions for other classes of potentials.
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Appendix A. Derivatives of the regularized Coulomb potential

With the definition of the regularized Coulomb potential

WP(r, t; ε) = [rP(t)
2 + ε2]−1/2 ≡ rPε (t)−1 (A.1)

and the elementary rules

∇ = (∇rPε )
∂

∂rPε
= rPWP

∂

∂rPε
∇ · rP = 3
∂trP = −ṘP

r2
P

r2
Pε

= 1− ε2W 2
P

(A.2)

all required derivatives can be calculated. Derivatives with respect to spatial coordinates are

∇WP = −rPW
3
P

∇Wn
P = −nrPW

n+2
P

1WP = −3ε2W 5
P

1Wn
P = n(n− 1)Wn+2

P − ε2n(n + 2)Wn+4
P

∇3WP = 15ε2rPW
7
P.

(A.3)

The derivatives with respect to time have been calculated for a classical straight line motion
with R̈P = 0

∂tWP = (ṘP · rP)W
3
P

∂tW
n
P = n(ṘP · rP)W

n+2
P

∂2
t WP = 3(ṘP · rP)

2W 5
P − Ṙ2

PW
3
P.

(A.4)

Using equations (A.3) or (A.4), the mixed derivatives with respect to time and spatial
coordinates are obtained as

∂t∇WP = ṘPW
3
P − 3rP(ṘP · rP)W

5
P

∂t1WP = −15ε2(ṘP · rP)W
7
P.

(A.5)

It is clear that analogous relations hold for the derivatives of the regularized Coulomb potential
WT(εT) with respect to spatial coordinates. One only has to replacerP by r andε by εT in
equation (A.3). SinceWT(εT) is time-independent, all derivatives ofWT(εT) with respect to
time vanish.

Appendix B. Derivatives of the BGM wavefunctions forµ = 0

For the calculation of matrix elements we have to evaluate1χ0
nlm(r; ξ, εT) explicitly. With

the definition of the spherical BGM wavefunctions of orderµ = 0

χ0
nlm(r; ξ, εT) = rn−1

εT
exp(−ξrεT

)(r/rεT
)lYml (θ, ϕ) (B.1)
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the property

1Yml (θ, ϕ) = −
l(l + 1)

r2
Yml (θ, ϕ) (B.2)

of the spherical harmonics, and the gradient and Laplace operators in spherical coordinates
(with κ = cosθ )

∇ = er∂r − eθ
√

1− κ2

r
∂κ + eϕ

1

r
√

1− κ2
∂ϕ

1 = ∂2
r +

2

r
∂r +

(1− κ2)

r2
∂2
κ −

2κ

r2
∂κ +

1

r2(1− κ2)
∂2
ϕ

(B.3)

one immediately sees that

1χ0
nlm(r; ξ, εT) = 1(rn−1

εT
exp(−ξrεT

)(r/rεT
)l)Yml (κ, ϕ)

+2∇(rn−1
εT

exp(−ξrεT
)(r/rεT

)l)︸ ︷︷ ︸
∼er

·∇(Yml (κ, ϕ))︸ ︷︷ ︸
∼eθ ,eϕ

+rn−1
εT

exp(−ξrεT
)(r/rεT

)l1(Yml (κ, ϕ))

=
(
∂2
r +

2

r
∂r

)
(rn−1
εT

exp(−ξrεT
)(r/rεT

)l)Yml (κ, ϕ)

−l(l + 1)rn−3
εT

exp(−ξrεT
)(r/rεT

)l−2Yml (κ, ϕ). (B.4)

The calculation of the radial derivatives is straightforward and one finally arrives at

1χ0
nlm(r; ξ, εT) = −(n− l − 1)(n− l − 3)ε2

Tχ
0
(n−4)lm + 2(n− l − 3

2)ε
2
Tξχ

0
(n−3)lm

+[n(n− 1)− l(l + 1)− ε2
Tξ

2]χ0
(n−2)lm − 2nξχ0

(n−1)lm + ξ2χ0
nlm. (B.5)

Neglecting terms of orderε2
T, relation (B.5) reduces to the well known eigenvalue equation(

−1

2
1− l(l + 1)

2r2
+ V STO

nξ

)
ψSTO
nlm = −

1

2
ξ2ψSTO

nlm (B.6)

of the Slater-type orbitals

ψSTO
nlm (r; ξ) = rn−1 exp(−ξr)Yml (θ, ϕ) (B.7)

with the potential

V STO
nξ ≡

n(n− 1)

2r2
− nξ

r
. (B.8)

Appendix C. Evaluation of matrix elements

In order to solve the TDSE (4.12), the following matrix elements are needed:

S(n
′l′m′)(nlm)(µ′+µ)

χ ≡ 〈χ0
n′l′m′ |Wµ′+µ

P |χ0
nlm〉

M
(n′l′m′)µ′(nlm)µ
S ≡ 〈χ0

n′l′m′ |Wµ′
P ÔW

µ
P |χ0

nlm〉
= 〈χ0

n′l′m′ |Wµ′
P (− 1

21 + V̂T + V̂P− i∂t )W
µ
P |χ0

nlm〉.
(C.1)

With the aid of appendices A and B, the Schrödinger matrixMS can be readily expressed in
terms of the overlap matrixSχ between BGM states. The potential matrix elements

〈χ0
n′l′m′ |Wµ′+µ

P V̂T|χ0
nlm〉 = −QTS

(n′l′m′)((n−1)lm)(µ′+µ)
χ

〈χ0
n′l′m′ |Wµ′+µ

P V̂P|χ0
nlm〉 = −QPS

(n′l′m′)(nlm)(µ′+µ+1)
χ

(C.2)
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can be evaluated without further difficulty. Considering the stationarity of the functionsχ0
nlm

and using equation (A.4), the matrix elements including derivatives with respect to time can
be transformed into

〈χ0
n′l′m′ |Wµ′

P (−i∂t )W
µ
P |χ0

nlm〉 = −iµ〈χ0
n′l′m′ |(ṘP · rP)W

µ′+µ+2
P |χ0

nlm〉
= −iµ〈χ0

n′l′m′ |v(z− vt)Wµ′+µ+2
P |χ0

nlm〉 (C.3)

for a straight line movement of the projectile. The evaluation ofzχ0
nlm(r; ξ, εT) is more

involved. With the abbreviationκ ≡ cosθ we first rewrite

zχ0
nlm(r; ξ, εT) = rκrn−1

εT
exp(−ξrεT

)(r/rεT
)lYml (κ, ϕ)

= rκ
√

2l + 1

4π

(l −m)!
(l +m)!

rn−1
εT

exp(−ξrεT
)(r/rεT

)lPml (κ)e
imϕ. (C.4)

Employing the well known relation

(2l + 1)κPml (κ) = (l −m + 1)Pml+1(κ) + (l +m)Pml−1(κ) (C.5)

which holds both for positive and negative values ofm if the convention

P−ml (κ) = (−1)m
(l −m)!
(l +m)!

Pml (κ) (C.6)

is used, and taking into account thatr2 = r2
εT
− ε2

T, one obtains

zχ0
nlm(r; ξ, εT) =

√
(l −m + 1)(l +m + 1)

(2l + 1)(2l + 3)
χ0
(n+1)(l+1)m(r; ξ, εT)

+

√
(l −m)(l +m)

(2l − 1)(2l + 1)
(χ0
(n+1)(l−1)m(r; ξ, εT)− ε2

Tχ
0
(n−1)(l−1)m(r; ξ, εT)). (C.7)

Together with equation (C.3) this finally yields

〈χ0
n′l′m′ |Wµ′

P (−i∂t )W
µ
P |χ0

nlm〉 = iµ(v2t)S(n
′l′m′)(nlm)(µ′+µ+2)

χ

−iµv

√
(l −m + 1)(l +m + 1)

(2l + 1)(2l + 3)
S(n

′l′m′)((n+1)(l+1)m)(µ′+µ+2)
χ

−iµv

√
(l −m)(l +m)

(2l − 1)(2l + 1)
(S(n

′l′m′)((n+1)(l−1)m)(µ′+µ+2)
χ

−ε2
TS

(n′l′m′)((n−1)(l−1)m)(µ′+µ+2)
χ ). (C.8)

According to [16], the matrix representation of the Laplace operator can be reduced to

〈χ0
n′l′m′ |Wµ′

P (− 1
21)W

µ
P |χ0

nlm〉 = −
µ

2(µ′ +µ)
〈1χ0

n′l′m′ |Wµ′+µ
P |χ0

nlm〉

− µ′

2(µ′ +µ)
〈χ0
n′l′m|Wµ′+µ

P |1χ0
nlm〉 +

1

2
µ′µ〈χ0

n′l′m′ |(∇WP)
2W

µ′+µ−2
P |χ0

nlm〉.
(C.9)

The last term of the right-hand side of equation (C.9)

1
2µ
′µ〈χ0

n′l′m′ |(∇WP)
2W

µ′+µ−2
P |χ0

nlm〉 = 1
2µ
′µ〈χ0

n′l′m′ |r2
PW

µ′+µ+4
P |χ0

nlm〉
= 1

2µ
′µ〈χ0

n′l′m′ |Wµ′+µ+2
P |χ0

nlm〉 − 1
2µ
′µε2〈χ0

n′l′m′ |Wµ′+µ+4
P |χ0

nlm〉
= 1

2µ
′µS(n

′l′m′)(nlm)(µ′+µ+2)
χ − 1

2µ
′µε2S(n

′l′m′)(nlm)(µ′+µ+4)
χ (C.10)
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is again expressed in terms of the overlap matrix only. Since we have

〈χ0
(n′−1)l′m′ |Wµ′+µ

P |χ0
nlm〉 = 〈χ0

n′l′m′ |Wµ′+µ
P |χ0

(n−1)lm〉 (C.11)

the first two terms of the right-hand side of equation (C.9) can be evaluated with the aid of
equation (B.5):

− µ

2(µ′ +µ)
〈1χ0

n′l′m′ |Wµ′+µ
P |χ0

nlm〉 −
µ′

2(µ′ +µ)
〈χ0
n′l′m|Wµ′+µ

P |1χ0
nlm〉

= − 1

2(µ′ +µ)
((µ′ +µ)ξ2S(n

′l′m′)(nlm)(µ′+µ)
χ

−2(nµ′ + n′µ)ξS(n
′l′m′)((n−1)lm)(µ′+µ)

χ

+{[n(n− 1)− l(l + 1)]µ′ + [n′(n′ − 1)− l′(l′ + 1)]µ}S(n′l′m′)((n−2)lm)(µ′+µ)
χ

−(µ′ +µ)ε2
Tξ

2S(n
′l′m′)((n−2)lm)(µ′+µ)

χ

+2[(n− l − 3
2)µ
′ + (n′ − l′ − 3

2)µ]ε2
TS

(n′l′m′)((n−3)lm)(µ′+µ)
χ

−[(n− l − 1)(n− l − 3)µ′ + (n′ − l′ − 1)(n′ − l′ − 3)µ]

×ε2
TS

(n′l′m′)((n−4)lm)(µ′+µ)
χ ). (C.12)

In this way, all relevant matrix elements have been reduced to simple overlap matrix elements.
We emphasize that only terms with the structureS(n

′l′m′)(...).
χ contribute. In a slightly different

notation, this important feature is expressed in equation (4.9). The above calculations also
demonstrate that the number of contributing overlap matrix elements is always the same,
except for the special case that some of the contributions vanish as their coefficients become
zero. These two facts are the key to the proof of the validity of the BGM basis as shown in
section 4.3.
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